教学计划
高中数学是让学生们开始真正理解数学学科的深度和广度的时候。高中数学的标准顺序如下所示:
代数 1
代数 2
几何
预修微积分
在这些课程中,概念范畴内的某些如下标准必须满足:
- 数字与数量
- 代数
- 函数
- 数学模型
- 几何
- 统计与概率
我们的辅导不仅会让学生们在这些课程和课题中取得优异的成绩,而且还会让他们明白如何运用过去几年里学习到的知识来作用于他们以后的学术追求。每一个课题都有几个重要的标准需要达到。这些标准是学生们将接受的教学的重点:
数字与数量
- 将指数的性质扩展到有理指数,利用有理数和无理数的性质
- 定量推理,使用单位来解决问题
- 在方程式、多项式恒等式中使用复数,并理解如何用复数进行算术运算
- 向量的表示和建模,对向量进行运算, 对矩阵执行运算并且在实际问题中使用这些知识
代数
- 解释表达式的结构并且把它们写成等价式来解决问题 (线性,二次,指数,多项式,有理)
- 对多项式进行运算,,理解多项式中的零与因数之间的关系,以及用恒等式来解决问题
- 改写有理式,创建描述数字或关系的方程式
- 理解并把解方程作为推理过程
- 解一个变量的方程式和不等式以及方程组,以及用图形来表示方程式和不等式
函数
- 理解函数的概念并使用函数符号
- 根据内容来解释应用题中出现的函数,并使用不同的表达式来分析函数
- 建立一个用于模拟两个量之间的关系的函数
- 建立和比较线性函数、二次函数和指数函数的模型并解决问题
- 根据内容来解释函数的表达式
- 用单位圆来扩展三角函数的定义域
- 用三角函数对周期行为建模
- 证明和应用三角等式
数学模型
- 理解和使用恰当的数学与统计学来分析实证情境
- 使用数学和统计学的方法对数量及其在物理、经济、社会和其他日常情况中的关系进行建模
几何
- 实验平面变换,理解刚性运动的全等性,以及几何作图
- 证明几何定理及其逆命题
- 理解相似性并且证明包含相似性的定理
- 定义三角比,解决直角三角形和一般三角形的问题
- 理解和应用关于圆的定理以及求圆弧的长度和扇形的面积
- 圆锥截面的几何表达与方程式之间的转换
- 用坐标代数方法来证明简单的几何定理
- 解释体积公式并用它们来解决问题
- 设想二维物体与三维物体之间的关系
统计与概率
- 在适当的时候使用计算器、电子表格或其他技术来对单个计量或测量变量的数据进行汇总、表达和解释
- 对两个分类变量和定量变量的数据进行总结、表达和解释
- 理解和评估统计实验中潜在的随机过程
- 从抽样调查、实验和观察研究中做出推断并证明结论
- 理解独立性和条件概率,并用它们来解释数据
- 使用概率规则来计算概率
- 计算期望值并使用它们来解决问题,使用概率来评估决策结果